首页> 资讯 > > 正文

亚马逊打包策略背后:机器学习驱动的优化

2023-02-17 14:02:09来源:互联网


(资料图)

随着亚马逊成为一个庞大的履行中心,该公司不得不提升其结构,重塑产品的运输方式,“为了客户和地球的利益”。它通过利用先进的算法和机器学习来做到这一点,同时考虑到可回收性。

“我们知道客户关心用于运送亚马逊订单的包装,”该公司在一份声明中表示。“客户希望订单以尺寸合适、易于回收的包装交付,以确保产品完好无损地送达,并最大限度地减少对环境的影响。”

在包装中利用技术

为了减少浪费并确保产品包装在尺寸合适的盒子或邮筒中,亚马逊一直在利用机器学习。该技术传达了哪些产品适合软包装(即邮寄和袋子),因为它们比类似大小的盒子轻 75%,并且更可持续。

在过去五年中,亚马逊一直在利用这种方法,这些算法在北美和欧洲减少了 35% 以上的瓦楞纸箱使用量。此外,几年前,亚马逊开始利用算法减少多件货物的包装,自 2018 年以来减少了北美 7% 的货物的包装尺寸。

亚马逊表示:“我们还一直在投资优化我们的包装套件,以最大限度地减少每个包装的用纸量,每年节省大约 60,000 吨纸板。”

据该公司称,这些算法——由基于网络的工具 PackOpt 运行——就像 3D 俄罗斯方块一样工作。高性能算法可以快速确定如何在一个盒子内配置不同的物品,分析可折叠或可压缩的物品,例如可以套在其他更坚固物品周围的衣服。

该算法需要两个输入:该地区的历史货运数据和箱子的尺寸。在幕后,该技术考虑了 25 个不同的参数。

然而,Amazon 的目标是让该工具足够简单,以便在全公司范围内进行流线型部署。

亚马逊首席研究科学家大卫·加斯佩里诺 (David Gasperino) 在今年夏天发布的亚马逊博客中说:“在解决这个优化问题和实际将优化包装送到客户家门口之间,必须采取许多不同的步骤。 ”“我们需要世界各地的区域包装领导者(他们不是科学家)快速了解如何使用 PackOpt 并亲眼看到其中的经济价值,并最终成为包装优化的拥护者。”

标签: 机器学习 最大限度 产品包装 完好无损

上一篇:赣州有哪些特色小吃_江西赣州特产
下一篇:最后一页